

MODULE SPECIFICATION FORM

Module Title:	AC Machines		Level:	5	Credit Value:	10			
Module code: (if known)	ENG50F	Cost Centre:		GAEE		JACS2 code:	H360		
Semester(s) in which to be offered: 2				With effect July 2015 from:					
Office use on. To be complete	~			approved: revised: on No:	July 1	2015			
Existing/New:	New	Title of mod	ule beir	ng replace	d (if an	y): N/A			
Originating Aca		ingineering a		Module Lea	ider:	Y Vagar	oov		
Module duration	n (total hours)	100	Sta	atus:		Free-standing 10	D-credit		
Scheduled learning and teaching hours 36			cor	core/option/elective component comprising					
			T ' '	(identify programme second half of ENG564					
Placement hours		() whe	where appropriate): (Electrical Machines).			mes).		
Percentage taug	tht by Subjects othe jects):	r than originati	ng Subje	ect (please	0	%			
Programme(s	s) in which to be	offered:		Pre	-requisit	tes per			

Module Aims:

To develop the students' abilities to analyse techniques and performance of synchronous, induction and special machines by an in-depth knowledge of the principles of operation in order to exercise the ability to select a machine for a given task .

Expected Learning Outcomes

Knowledge and Understanding:

At the completion of this module, the student should be able to:

Enginering European Programme (Non Award Bearing)

- 1. Identify and explain the electromagnetic principles of, and the operation and construction of, a range of a.c. rotating machines;
- 2. Define the operating characteristics of a.c. rotating machines and transformers;
- 3. Analyse and select appropriate a.c. rotating machines and transformers for given applications;
- 4. Evaluate the various types of a.c. machine used in industry and select the appropriate machine for optimum efficiency.

 (KS 3, 5)

1

Key skills for employability

- 1. Written, oral and media communication skills,
- 2. Leadership, team working and networking skills
- 3. Opportunity, creativity and problem solving skills
- 4. Information technology skills and digital literacy
- 5. Information management skills
- 6. Research skills

- 7. Intercultural and sustainability skills
- 8. Career management skills
- Learning to learn (managing personal and professional development, self management)

None

10. Numeracy

programme

(between levels):

July, 2014

Assessment: Please indicate the type(s) of assessment (eg examination, oral, coursework, project) and the weighting of each (%).

Assessment is by means of an examination covering all outcomes. It is an unseen time-constrained one with a fixed number of questions, typically five, where students are required to answer only three out of the five possible.

(This corresponds to Assessment 2 of ENG564 – Electrical Machines)

Assessment number (use as appropriate)	Learning Outcomes met	Type of assessment	Weighting	Duration (if exam)	Word count (if coursework)
Assessment One:	1, 2, 3, 4	Examination	100%	2 hr	

Learning and Teaching Strategies:

The module will be delivered through lectures, tutorials and practical exercises. The module will be presented to students through a specific structure of lectures and interactive tutorials. Leaning will be reinforced and extended by directed self-study via a set of problem-solving activities and practical laboratory investigations.

Syllabus outline:

Three-Phase Synchronous Motors: Construction, Operation, Per phase equivalent circuit, Phasor diagram, Excitation, Losses, Power flow diagram, Efficiency, Characteristics, Performance under different power factor conditions.

Induction Motors: Construction and principle of operation of three phase induction motor, Wound rotor induction motor, Squirrel cage induction motor, Generation of a rotating magnetic field, Synchronous and asynchronous speeds, Slip, Rotor e.m.f., Equivalent circuit, Dynamic resistance, Approximation of equivalent circuit, Losses, Power flow diagram, Efficiency, Torque/slip characteristics, Determination of equivalent circuit parameters, No-load test, Blocked rotor test, Starting techniques and skin effect, NEMA type consideration, Principle of operation and performance of single phase induction motor. Three phase induction motor operating as a single phase induction motor.

Induction Generator: Principle of operation of induction generator, Self-exciting conditions, Double feed induction generator.

Special Motors: Construction, operation, performance and applications of Stepper motor, Brushless dc motor and Permanent magnet synchronous motor.

Bibliography:

Essential Reading

Chapman, S. J. (2011) Electric Machinery Fundamentals, 5th Edn., New York: McGraw-Hill.

Wildi, T. (2005) Electrical Machines, Drives and Power Systems, 6th Edn., Englewood Cliffs: Prentice-Hall.

Recommended reading:

Mohan, N. (2012) Electric Machines and Drives: A First Course, Hoboken: Wiley.

Hubert, C.I. (2002) *Electric Machines: Theory, Operating Applications and Control*, 2nd Edn., Englewood Cliffs: Prentice-Hall.

2 July, 2014